The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.

نویسندگان

  • X Yang
  • C Yang
  • A Farberman
  • T C Rideout
  • C F M de Lange
  • J France
  • M Z Fan
چکیده

The mammalian target of rapamycin (mTOR) plays key roles in cellular metabolism and hypertrophic-hyperplasic growth, and it acts as a central regulator of protein synthesis and ribosome biogenesis at the transcriptional and translational levels by sensing and integrating signals from mitogens and nutrients. Hormonal and stress factors can affect the mTOR-signaling pathway via their receptors and signal transduction pathways. Nutritional regulation of the mTOR-signaling pathway is mediated by their corresponding plasma membrane transporters, other unknown mechanisms, or both. Adenine monophosphate-activated protein kinase, an important cellular energy sensor, can interact with the mTOR-signaling pathway to maintain cellular energy homeostasis. Interactions of mTOR with regulatory-associated protein of TOR or rapamycin-insensitive companion of mTOR result in 2 mTOR complexes, with the former (mTOR complex-1) being the primary controller of cell growth and the latter (mTOR complex-2) mediating effects that are insensitive to rapamycin, such as cytoskeletal organization. Upstream elements of the mTOR-signaling pathway include Ras-homolog enriched in brain, and tuberous sclerosis complex 1 and 2, with tuberous sclerosis complex 2 as the linker between phosphatidylinositol 3-kinase/protein kinase B or Ras-Raf-mitogen-activated protein kinase-extracellular signal-regulated protein kinase pathways and the mTOR pathway. Ribosomal protein S6 protein kinase 1 and eukaryotic initiation factor 4E binding protein 1 are currently the 2 best-known downstream effectors of mTOR signaling. Hormonal factors, stressors, and nutrients can differentially mediate cellular metabolism and growth via the mTOR pathway with effectors specific to the organ or tissue types involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Evaluation of the Effects of Nicotine on Mammalian Target of Rapamycin Complex 2 and Signal Transducer and Activator of Transcription 3 Genes Expression in a Mouse Model of Allergic Asthma: An experimental study

Background & Aims: Allergic diseases have increased in the last decade worldwide and researchers have been trying to introduce new strategies and drugs to treat these types of diseases. Nicotine shows anti-inflammatory properties and the studies have revealed that it can reduce the inflammation and the allergic responses. The mammalian target of rapamycin (mTOR) is a multifunctional protein kin...

متن کامل

The effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats

Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...

متن کامل

The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review

Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...

متن کامل

P162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases

Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...

متن کامل

THE EFFECTS OF 4 WEEKS HIGH INTENSITY INTERVAL TRAINING ON MAMMALIAN RAPAMYCIN TARGET PROTEIN (MTOR) AND STEROL TRANSCRIPTION FACTOR REGULATORY PROTEIN-1 (SREBP1) PROTEINS CONTENT IN DIABETICS OBESE RATS ADIPOSE TISSUE

Background: Obesity and type 2 diabetes can impair the function of important cellular pathways. Activation of the mTOR pathway results in regulation of the SREBP1 protein for metabolism and regulation of adipose tissue. The aim of this study was to investigate the effect of 4 weeks of high intensity interval training on the content of mTOR and SREBP1 in adipose tissue of type 2 diabetic rats. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of animal science

دوره 86 14 Suppl  شماره 

صفحات  -

تاریخ انتشار 2008